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Abstract
Introduction Artificial intelligence based on machine learning has made large advancements in many fields of science and 
medicine but its impact on pharmacovigilance is yet unclear.
Objective The present study conducted a scoping review of the use of artificial intelligence based on machine learning to 
understand how it is used for pharmacovigilance tasks, characterize differences with other fields, and identify opportunities 
to improve pharmacovigilance through the use of machine learning.
Design The PubMed, Embase, Web of Science, and IEEE Xplore databases were searched to identify articles pertaining to the 
use of machine learning in pharmacovigilance published from the year 2000 to September 2021. After manual screening of 7744 
abstracts, a total of 393 papers met the inclusion criteria for further analysis. Extraction of key data on study design, data sources, 
sample size, and machine learning methodology was performed. Studies with the characteristics of good machine learning prac-
tice were defined and manual review focused on identifying studies that fulfilled these criteria and results that showed promise.
Results The majority of studies (53%) were focused on detecting safety signals using traditional statistical methods. Of the 
studies that used more recent machine learning methods, 61% used off-the-shelf techniques with minor modifications. Tem-
poral analysis revealed that newer methods such as deep learning have shown increased use in recent years. We found only 
42 studies (10%) that reflect current best practices and trends in machine learning. In the subset of 154 papers that focused 
on data intake and ingestion, 30 (19%) were found to incorporate the same best practices.
Conclusion Advances from artificial intelligence have yet to fully penetrate pharmacovigilance, although recent studies 
show signs that this may be changing.

Key Points 

We reviewed 393 papers in the intersection of pharma-
covigilance (PV) and machine learning, and most involved 
signal detection as opposed to data intake or data analysis.

There has been a rapid rise in the use of deep learning 
in the PV literature, but corresponding dramatic success 
has not been seen in other fields such as computer vision, 
natural language processing, and healthcare.

There are opportunities to implement machine learning 
approaches throughout the PV pipeline.

1 Introduction

Pharmacovigilance (PV) is fundamentally a data-driven field 
as it requires the collection, management, and analysis of a 
large amount of data gathered from a wide range of dispa-
rate sources [1]. The primary type of data used in PV are 
individual case safety reports (ICSRs), which are records of 
suspected adverse events collected via multiple channels, 
aggregated and organized into large databases, and constantly 
monitored to detect safety signals [2]. ICSRs come from a 
multitude of sources, including chatbot interactions, electronic 
health records (EHRs), published literature, patient registries, 
patient support programs, or even directly from patients via 
social media [3]. Reports are collected worldwide and char-
acterized by heterogeneity in format, language, and unique 
characteristics of the underlying healthcare systems. Adverse 
events must be identified and analyzed in order to find poten-
tial emerging safety issues in medicines and vaccines.
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The central challenge of PV is how to make sense of 
these large and heterogeneous data to quickly and reliably 
find the ‘needles in the haystack,’ which are safety signals 
that require escalation and triage [4]. Given the rise of arti-
ficial intelligence (AI) powered by new advancements in 
machine learning (ML) across many fields of science [5–7] 
and medicine [8–11] over the last decade [12, 13], many 
have speculated [14, 15] that these same technologies could 
be brought to bear on the core problems of PV. The use of 
these methods for human safety data first appeared in the 
early 1990s [16] and has steadily increased since the 2000s. 
The goal of this review is to systematically identify works 
that use ML, broadly defined, for safety data to character-
ize the current state of ML in PV, and to provide clarity on 
ways that recent advances in AI and ML can be translated 
to improve various components of PV.

Care must be taken when attempting to extrapolate the 
success of ML in other areas compared with PV since there 
are specific factors that may account for the recent success of 
ML that may or may not be present for PV applications [15]. 
More so than any other ML technique, it has been the rise 
of ‘deep learning’ methods that have catalyzed the current 
AI revolution [13]. These methods are scalable and can train 
on petabytes of data through the use of graphical processing 
units (GPUs) [17] and continue to improve even when the 
performance of non-deep learning methods has saturated 
[18, 19]. In addition to scalability, deep learning’s modu-
lar nature brings the added benefit of easily incorporating 
domain-specific knowledge (often called an inductive bias) 
to point the model in the direction of good or parsimoni-
ous solutions [20]. Although image recognition is not com-
monly a task in the current PV pipeline, deep learning mod-
els known as convolutional neural networks (CNNs) offer a 
particularly salient example of how potent the combination 
of large data and domain knowledge can be.

CNNs were introduced in 1988 [21] but it was not until 
2010 when datasets [22] with millions of images became 
available that they began to transform the field of computer 
vision [23, 24]. Moreover, the convolution operator and the 
network structure (modeled loosely on the visual cortex 
[25]) in CNNs are powerful image-specific inductive biases 
that give the deep learning model a head start when learn-
ing a new image recognition task. Without either of these 
components (large data and the inductive bias of convolu-
tion), it is unlikely that deep learning would have caused the 
computer vision revolution of the 2010s. Indeed, numer-
ous studies have found that without large data and induc-
tive biases, deep learning is often no better than traditional 
statistical models [26–28]. These lessons have been born out 
repeatedly in subsequent applications of game playing [29, 
30], biology [5, 6], natural language processing (NLP) [31, 
32], and image generation [33–35].

Taken as a whole, it is thus reasonable to expect that a 
field is unlikely to experience a true paradigm shift from 
the current crop of deep learning-powered AI techniques 
without having at least some of these prerequisites in place. 
Despite the widespread interest in AI and its application to 
safety data [36, 37], including several review articles [14, 
15], there are no scoping reviews that critically assess the 
extent to which PV is poised to be improved by AI under 
this framework. Previous reviews have focused on specific 
elements such as NLP techniques for clinical narrative min-
ing in EHRs [38] or in reducing the frequency or impact of 
adverse events to patients [39]. Our review is unique in that 
it seeks to fill this gap to provide a clearer understanding of 
how current AI/ML practices and standards in PV align with 
the critical factors for success identified in adjacent areas 
such as biology and medicine.

To be as comprehensive as possible, we take a broad defi-
nition of ML for safety data and include traditional signal 
detection methods such as Bayesian Confidence Propagation 
Neural Networks (BCPNN) and related techniques [40, 41] 
given their roots in ML (see the Methods section for the 
full search details). We surveyed a 21-year period from the 
year 2000 to September 2021, reflective of the time before 
and after significant AI breakthroughs in 2012–2015 [23, 
42–46], to see what effect, if any, these results had on PV. 
The scope of this review is limited only to (1) ingestion 
of safety data from all sources, including the safety data 
pipeline, social media, EHRs, and scientific literature, fol-
lowed by (2) the processing and structuring of data, as well 
as (3) the processes of analyzing, understanding, linking, 
and disseminating or sharing, the safety data. While ML 
has made advances in healthcare more broadly [47–51] and 
ML research in these areas does have the potential to impact 
PV, we sought to characterize the use of ML that directly 
analyzed safety data (e.g. social media, forums, or ICSRs 
such as those in the FDA Adverse Event Reporting System 
[FAERS]) and excluded studies that performed adjacent 
kinds of tasks (e.g. ML research on biochemical pathways 
or meta research on drug safety). Thus, for the purposes of 
this review, we have chosen to retain our focus by limiting 
the review to those topics related specifically to the applica-
tion of ML and human safety data (i.e. work that explicitly 
analyzes data on suspected adverse events of drugs and vac-
cines) for data ingestion or analysis.

2  Methods

2.1  Study Design

We queried four databases (PubMed, Embase, Web of Sci-
ence Core Collection, and IEEE Xplore) for abstracts of full-
text research papers containing terms related to ML and PV. 
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The searches were carried out on 9 September 2021 and 
were limited to articles published in the year 2000 or later. 
Furthermore, our review was limited to full-text English 
articles and conference abstracts (non-English papers were 
excluded). The full list of search terms and the search query 
used to identify the articles in this review are available as an 
electronic supplementary file.

We focused our search criteria on ML terms related to 
disproportionality analysis, common to PV research, as well 
as modern ML techniques (e.g. deep learning). This allowed 
us to compare traditional methods of PV alongside cutting-
edge ML research. Articles solely focused on rules-based 
methods or knowledge graph- or ontology-based methods 
(e.g. Merrill et al. [52, 53]) were excluded from this review 
since, on their own, these are not direct ML methods per se.

Two independent reviewers determined if an abstract was 
in the scope of this review. A third reviewer adjudicated con-
flicts between reviewers or indecision by a reviewer (indi-
cated by a ‘maybe’ vote). For studies that met the inclusion 
criteria, one reviewer conducted a full-text review to extract 
data. Analysis of extracted data was performed using the 
R statistical programming language [54]. Statistical signifi-
cance for testing for a difference in proportions Chi-square 
test enabled subgroup analysis of studies that proposed 
methods for the intake and processing of safety data. This 
subgroup was enriched for ML models of interest. Topic 
modeling, described below, enabled an analysis of temporal 
trends in methods development.

2.2  Evaluation Criteria

To understand the extent to which PV studies are amenable 
to current trends in the broader ML literature, we assessed 
each paper using the following criteria:

• Task type: We categorized each study into one of three 
categories reflective of the primary approach: signal 
detection, data intake, or data analysis.

– Signal detection: Papers that are ‘traditional’ PV 
analyses that seek to estimate a statistical quantity 
(e.g. information component, odds ratio, etc.) for 
signal detection. This category could also include 
alternative ML methods for signal detection.

– Data intake: Papers that use ML models to process 
safety data of various kinds for storage in databases 
or for downstream activities such as signal detection. 
Examples include adverse event detection, named 
entity recognition, and other preprocessing activities.

– Data analysis: Papers that leverage safety data but do 
not fall into either of the previous categories. Exam-
ples include clustering of adverse events and topic 
modeling.

• Dataset and dataset size: We collected the name of the 
dataset and number of data points each study used to train 
and/or assess its methodology. In the case of multiple 
reported dataset sizes, we reported the ‘most specific’ 
number. For example, if a study reported using millions 
of safety reports from FAERS, but trained and assessed 
models on a subset of thousands of reports related to 
acute kidney injury, we went with the smaller number.

• Modeling approach: We identified the primary algorithm 
or model used in each study in addition to any secondary 
algorithms or techniques.
– Examples: BCPNNs, reporting odds ratios (ROR), 

random forests, transformers, etc.
• Method novelty: Given the importance of domain adap-

tation seen in other fields such as computer vision and 
NLP, we subjectively assessed whether researchers in 
each study used an ‘off the shelf’ ML algorithm (e.g. ran-
dom forests, support vector machines [SVMs]) or used a 
model tailored to the task, or otherwise made non-trivial 
modifications to an existing algorithm to improve perfor-
mance (e.g. beyond hyperparameter tuning).

• Use of external information or pretrained models: One of 
the great benefits of current deep learning models is the 
ability to leverage external data and pretrained models 
when labeled data are scarce. We checked for additional 
information as inputs to the model (e.g. incorporation of 
known adverse effects or molecular structure). We also 
looked for the use of models that had been trained on 
other datasets then transported to the PV task at hand.

• Reproducibility: We searched for dataset and code avail-
ability to indicate whether or not a study was reproduc-
ible. We did consider social media data as publicly avail-
able, but acknowledge that it may be difficult to exactly 
reproduce a dataset based on a social media crawl. For 
code availability, we identified all papers that provided a 
link to Github or other web-hosted code, or provided sup-
plementary materials with code. We manually assessed 
this subset of papers for currently available code (e.g. no 
dead links).

• Overall evaluation: We recorded a binary subjective 
evaluation indicating whether each study was reflec-
tive of the best practices in the broader ML literature 
(e.g. appropriate inductive biases, no obvious test-train 
leakage, tuning hyperparameters, cross validation). 
This determination was based on how well each study 
reflected the other criteria on this list.

2.3  Topic Modeling

We trained a structural topic model (Latent Dirichlet Allo-
cation [LDA]) using the ‘stm’ R package [55]. In order to 
process the documents included in our final screen, we pre-
processed the text to remove all non-alpha-numeric text and 
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removed references (e.g. ‘[1]’). We then removed punctua-
tion and limited analysis to words between 2 and 20 char-
acters. For each document, we only considered words that 
appeared at least 10 times in that respective document. After 
preprocessing by removing stop words and stemming words, 
we needed to select the number of topics, K, to instantiate 
the topic model with. We considered a range of 5–45 topics 
and chose K = 25 based on log-likelihood on held-out data, 
exclusivity, and semantic coherence. Finally, we fit the topic 
model using a semi-collapsed variational expectation-max-
imization algorithm regressed on the year of publication.

3  Results

3.1  Main Results

We manually reviewed 7744 unique abstracts that were iden-
tified by searching the PubMed, Embase, Web of Science, 
and IEEE Xplore databases. After manual screening by at 
least two reviewers, 672 (8.7%) abstracts passed inspec-
tion and had their full-text retrieved (Fig. 1). Of these, 279 
(41.5%) did not meet the inclusion criteria due to lack of rel-
evance after reviewing the full text, or did not have the full 
text available, resulting in 393 articles for analysis. Figure 2 
displays summary information for the primary datasets and 
models in addition to the task classification for each study.

Overall, FAERS was the most popular single database 
(Fig. 2a) and was used by 24% of the studies. Social media 
data were used by 12% of studies, while EHR data were 
used by 11% of studies. Traditional statistical PV methods 
such as disproportionality scores remain very popular, with 
144 (37%) of the included studies using one of them as the 
primary analysis model. Sample sizes varied greatly across 

studies and across datasets (Table 1 and Fig. 3), with FAERS 
being notable for having a mean sample size of 4.3 million 
and a median sample size of 243,510. Note that the notion 
of sample size is difficult to compare across data sources 
since the unit of analysis can be quite different. For example, 
studies using social media data often reported the number 
of posts (e.g. Tweets), while EHR studies often reported 
the number of patients. Ten percent of studies reported no 
explicit sample size at all.

With respect to method novelty, the vast majority (73%) 
used ‘off-the-shelf’ methods with little to no problem-spe-
cific adaptation or domain knowledge. Method novelty var-
ied with respect to method type; 61% of papers using deep 
learning or other ML methods had novel adaptations, while 
only 10% of disproportionality papers did. Similarly, 92% 
trained a model ‘from scratch’, leaving only 8% of studies 
that leverage a pretrained model in some capacity, and only 
18% explicitly used some kind of external information or 
data. Six-three percent of the studies used data that were 
publicly available, while 7% had code that was publicly 
accessible at some point in time. Our reviewers’ subjective 
evaluation found that 42 (10%) studies were reflective of 
modern best practices in ML.

3.2  Subgroup Analysis of Data Intake and Pipeline 
Studies

We performed a subgroup analysis of studies that proposed 
methods for the intake and processing of safety data. The use 
of transfer learning, methodological novelty, and the types of 
models used are shown in Fig. 4 and the sample size by data-
set is shown in Table 2. Compared with all included studies 
of the previous section, this category had significantly higher 
levels of methodological innovation and novelty (40% vs. 

Fig. 1  Summary of inclusion 
and exclusion process. Articles 
identified in one of the four 
databases using keyword and 
MeSH term searches were 
manually screened for inclusion. 
MeSH Medical Subject Head-
ing, ML machine learning, PV 
pharmacovigilance
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27%; p = 0.03) and had higher uses of pretrained models 
(19% vs. 8%; p = 0.03). We found that 30 (20%) of these 
studies reflect current best practices, higher than the 10% 
estimate when considering all included papers.

3.3  Temporal Trends

Next, we assessed how some of the patterns from the pre-
vious sections varied during the study period. Figure 5 
shows trends for the number of publications, task type, 
and model use for each year in the study period. By and 
large, the volume of ML-related PV publications went up 
year-over-year (Fig. 5a). Starting in 2015, the number of 
studies leveraging ML for data intake (Fig. 5b) markedly 
increased, which coincided with a rapid increase in the 
number of studies using deep learning (Fig. 5c), and, by 
2020, deep learning was the most popular technique used 
in the included PV studies. These trends suggest that, 
especially for data intake studies, ML may be starting to 
gain traction.

3.4  Topic Model Analysis

We then performed a topic model analysis of the full text 
using Latent Dirichlet Allocation (LDA) [56] to see what 
high-level trends were present. In Table 3, we show four 
of the most prevalent topics discovered by LDA along with 

Fig. 2  Summary of datasets, primary algorithms, and task type of 
the included studies. a Primary dataset used in each study. b Primary 
analysis method or model used by each study. c Study task classifi-
cation. EHR electronic health record, FAERS FDA Adverse Event 
Reporting System, JADER Japanese Adverse Drug Event Report, 
KAERS Korea Adverse Event Reporting System, VAERS Vaccine 

Adverse Event Reporting System, WHO World Health Organiza-
tion, ROR reporting odds ratio, IC information component, BCPNN 
Bayesian Confidence Propagation Neural Network, LSTM long short-
term memory, RNN recurrent neural network,  SVM support vector 
machine, CNN convolutional neural network

Table 1  Summary statistics for types of data utilized and sample 
sizes used

SD standard deviation, IQR interquartile range, EHR electronic health 
record, FAERS FDA Adverse Event Reporting System, JADER Jap-
anese Adverse Drug Event Report, KAERS Korea Adverse Event 
Reporting System, VAERS Vaccine Adverse Event Reporting System

Dataset n Mean Median SD IQR

EHR 43 628,859 2633 2,004,196 63,516
FAERS 93 4,306,251 243,510 14,602,542 3,134,268
JADER 9 136,331 33,852 184,969 282,323
KAERS 12 254,293 4982 789,068 6993
Literature 11 17,200 3000 34,797 14,964
Other 138 3,067,200 26,508 14,025,930 259,820
Social media 47 46,685,103 14,570 304,970,307 100,183
VAERS 30 64,363 2619 234,839 13,714
Vigibase 10 365,710 11,144 941,166 14,944
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keywords that identify the topic and our subjective assess-
ment of topic focus. We analyzed topic model results using 
the ‘stm’ and ‘LDAvis’ packages [55, 57]. Figures 6 and 7 
show topics whose expected relative proportion increased 
and decreased, respectively, during the study period. These 
results align with those from the manual annotation pre-
sented in the previous section. Deep learning has seen rela-
tive gains in use recently and is likely to see further increases 
in coming years.

4  Discussion

Our scoping review revealed several interesting trends. First 
and most obvious, traditional signal detection methods in 
PV (e.g. BCPNN) and data sources remain quite popu-
lar and, until very recently, comprised the bulk of signal 
detection research. That is not to say that the use of these 
approaches has slowed, but that research development has 
shifted to other areas of method development. Interest at 

Fig. 3  Distribution of sample size for the most popular datasets. EHR electronic health record, FAERS FDA Adverse Event Reporting System, 
KAERS Korea Adverse Event Reporting System, VAERS Vaccine Adverse Event Reporting System
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the intersection of ML and PV is growing; Fig. 5a shows 
that the number of publications has increased approximately 
sixfold in the past 10 years alone. Figure 5c indicates that 
deep learning-based methods have recently eclipsed statis-
tical methods in terms of publication numbers. This may 
have been enabled by new developments in deep learning for 
text analysis (e.g. transformers [32]), as initial deep learning 
progress focused on image recognition and was thus less rel-
evant to PV tasks. Moreover, easy to use frameworks such as 
Tensorflow and PyTorch have enabled rapid development of 
ML models. In particular, there has been a rise in the amount 
of papers focusing on more sophisticated ML techniques. 
This indicates that the field is shifting towards classification 

or regression tasks in addition to the more traditional safety 
signal statistical analyses. Figure 5b shows this fourfold 
increase in supervised tasks over the last 5 years alone.

In our subgroup analysis of studies that proposed methods 
for the intake and processing of safety data, we found articles 
within this category demonstrated higher levels of methodo-
logical innovation and novelty (40% vs. 27%; p = 0.03) and 
made more use of pretrained models (19% vs. 8%; p = 0.03). 
This could be the result of more freedom to define the task 
and model when compared with signal detection tasks and 
the ability to leverage existing pretrained models trained on 
other types of non-PV text data. Although these crucial ML 
ingredients were more frequently present in this task, this 
is lower than what would be expected for other areas where 
transfer learning is ubiquitous [11, 58].

One limitation of our review is a property of scientific 
publishing: only novel results are typically published in peer-
reviewed journals. For signal detection papers, that means 
our scoping review has covered both novel methods of signal 
detection and new drug/adverse event relationships identi-
fied by standard methods. In contrast, innovative data intake 
and analysis methods have been included in our review, but 
routine use of ML for these parts of PV are missing from the 
published record. This is partially reflected in our method 
novelty results; 61% of papers with deep learning or ML 
made novel changes, while only 10% of disproportionality 

Fig. 4  Breakdown of the use of a transfer learning, b methodological 
novelty, and c popular algorithms for data intake and pre-processing 
studies. LSTM long short-term memory, RNN recurrent neural net-

work,  SVM support vector machine, CNN convolutional neural net-
work, ROR reporting odds ratio

Table 2  Summary of sample sizes used in intake and processing 
pipeline studies

SD standard deviation, IQR interquartile range, EHR electronic health 
record, FAERS FDA Adverse Event Reporting System, VAERS Vac-
cine Adverse Event Reporting System

Dataset n Mean Median SD IQR

EHR data 22 327,731 1237 1,082,972 6184
FAERS 4 1,158,504 70,357 2,223,398 1,146,282
Other 80 2,249,619 10,296 11,094,273 267,589
Social media 26 77,012,220 13,450 392,214,186 29,502
VAERS 3 5939 6034 3380 3379
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Fig. 5  Temporal trends in the pharmacovigilance literature. a Total 
number of publications by year shows an increasing volume of arti-
cles that use ML for PV. b The type of task performed by each study. 

c Trends in usage for several classes of models. ML machine learning, 
PV pharmacovigilance, SVM support vector machine

Table 3  Top four topics 
discovered by LDA by 
prevalence

Topic focus is a subjective assessment of the content based on the most relevant keywords for each topic, as 
determined by setting the relevancy metric λ to 0.3 in the ‘LDAvis’ package (see electronic supplementary 
Table S1 for a full list of topics). NLP natural language processing, VAERS Vaccine Adverse Event Report-
ing System, BCPNN Bayesian Confidence Propagation Neural Network

Topic focus Keywords Prevalence (%)

Deep learning Embed, LSTM, layer, model 7.01
Adverse events post-vaccination Vaccine, VAERS, Guillain–Barré syn-

drome, report
6.17

Signal detection BCPNN, PRR, Gamma Poisson Shrinker, 
shrinkage, method

5.87

Information extraction/NLP Annotate, entity, ADE, sentence 5.70
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analyses made novel changes in our reviewers’ estimations. 
While this bias is unavoidable, we believe that this scoping 
review likely captures most uses of ML for data ingestion 
and analysis due to the fact that the rapid rise of ML has 
been so recent. This bias will affect the ratio between signal 
detection and other papers, but the conclusions within sub-
groups should be unaffected.

However, returning to our original framing, it is not yet 
clear whether PV has assembled the critical mass of ingredi-
ents needed to benefit from the recent AI revolution powered 
primarily by large-scale deep learning methods, although it 
may be trending in that direction. Figure 3 shows that there is 
a large amount of human safety data that can serve as fodder 

for model training. However, most studies are bespoke, one-
off exercises that do not introduce methodological novelty 
beyond what has been published in other areas, and do not 
use pretrained models or external data despite an increas-
ing use of deep learning methods. In contrast to other areas 
that have rapid growth and transformation, PV studies still 
mostly focus on a single task and use a narrow subset of 
available data, neglecting to use pretrained models or exter-
nal data. Models that leverage multimodal data (e.g. text 
and structured data) have been particularly useful in other 
areas [34, 59, 60]. Another contrast with other areas is the 
availability of code. Only 7% of PV studies in our review had 
publicly available code at one point in time (approximately 

Fig. 6  Topics on deep learning 
and critical systems had their 
relative expected proportions 
increase

Fig. 7  Topics on disproportion-
ality analysis, BCPNN had their 
relative expected proportions 
decrease. BCPNN Bayesian 
Confidence Propagation Neural 
Network
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1% of papers have dead links to code). This is in contrast 
to 2019 estimates of code availability, where 21% of stud-
ies in ML for healthcare more broadly, 39% of computer 
vision papers, and 48% of NLP papers provided code [61]. 
Indeed, sharing of code, data, and rapid dissemination of 
results through preprint servers have accelerated progress in 
other areas of ML [62–64]. Code-sharing enables others to 
build on previous work rapidly, which is extremely impor-
tant when model complexity is high, as can be the case with 
many complicated deep learning models.

We wish to emphasize that we are not suggesting that PV 
researchers must follow the deep learning template, nor do 
we believe that deep learning is the only viable method for 
PV tasks. However, if PV tasks are to be improved by cur-
rent approaches based on deep learning, then the criteria of 
large datasets, the use of pretrained models when appropri-
ate, method novelty, and reproducibility are a reasonable set 
of requirements. By these criteria, we found that 10% of all 
studies and 20% of pipeline/intake studies were reflective of 
current trends based on deep learning. With the increasing 
use of large datasets and the rise of more modern ML tech-
niques observed in Fig. 5, it is likely safe to project that this 
percentage will increase over the next several years.

4.1  Recommendations

We provide some concrete recommendations that we believe 
could enhance AI and deep learning applications in PV.

• Incorporating domain knowledge: Incorporating domain-
specific knowledge biases in ML PV models (e.g. one-
dimensional CNNs to detect symptoms next to medica-
tions in Tweets or graph neural networks to leverage 
molecular structure). Known relationships or ontologies 
that relate symptoms, diseases, and drugs could also be 
directly incorporated into the model to improve perfor-
mance [65].

• External information and pretrained models: Incor-
porating external information about mechanisms of 
action, common adverse effects, or geographic location 
of reports. This could be used to help triage reports; if 
multiple reports with the same constellation of symp-
toms appear for a particular medication that one would 
not expect (e.g. as encoded by a prior distribution), this 
would be a clear sign for further investigation. There are 
numerous pretrained models available for text [66] and 
molecular data [67] that serve as good foundations for 
extracting information for PV text and could provide 
strong prior information when detecting adverse events 
in case reports.

• Methodological innovation available in other areas of 
ML: Incorporating new advances in ML literature, such 
as uncertainty quantification [68, 69], federated learning, 

and fairness ideas. Causal inference [70], an emerging 
field of epidemiology and computer science, is another 
promising avenue improving ML PV by incorporating 
known information about causal relationships directly 
into the model.

• Data sharing and reproducibility: Common data formats, 
benchmarks, and code sharing to foster reproducibility. 
There are several established benchmark datasets that 
have been used in the literature (n2c2 2018, MADE 1.0, 
etc.), but there is no equivalent of MNIST or CIFAR-10 
for PV that can objectively measure progress on a dif-
ficult but standardized task.

– Many efforts (e.g. Lindquist et al. [71], Hochberg 
et al. [72], Harpaz et al. [73]) towards benchmark 
tasks have resulted in rich labels for true positive 
and true negative drug/ADR relationships. However, 
these datasets do not come with accompanying pre-
processed data (e.g. safety reports or social media 
posts) that would provide an easy-to-use benchmark.

– Few investigations release their data after they scrape 
a public social media platform or forum. Although 
in theory one could recreate the authors’ work, it is 
nearly impossible to capture the exact same posts 
and process them in the same way.

– Studies have, in general, not published their code 
or calculations. We appreciate this is more under-
standable and less problematic for disproportional-
ity analysis with reporting odds ratio, proportional 
reporting ratio (PRR), or BCPNN, but even for such 
studies, there is value in code provision to enable 
reproducibility. For projects that include more com-
plex/modern ML models, public code repositories 
are lacking. In contrast to PV, this has been an influ-
ential factor that has spurred rapid development in 
the ML community.

4.2  Promising Near‑Term Applications of Machine 
Learning in Pharmacovigilance

While our review found that there is still much room for 
improvement, we wish to offer some near-term tasks that 
could benefit from the well-executed use of ML today. We 
offer suggestions for areas across the PV pipeline [74], 
where ML may have impact in the near- to medium-term, 
but note that some of these tasks will likely still require 
substantial effort to achieve.

• Translation and multi-language models: Case reports 
and other safety data can be submitted from anywhere 
in the world and written in hundreds of different lan-
guages. Processing these often necessitates translation 
into a common language of record before further evalu-
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ations can take place. In recent years, ML has become 
exceedingly good at translation [75, 76], even for low-
resource languages that do not have large amounts of 
training text available [77, 78]. There are even individual 
models that have been trained on vast amounts of lan-
guage data and are capable of processing hundreds of 
languages [79]. Moreover, many of these models are pub-
licly available and could be easily repurposed for the PV 
intake and processing pipeline. Integrating the translation 
model directly into the PV pipeline in a trainable way 
will allow it to adapt the capabilities to a variety of tasks 
when compared with treating translation as an auxiliary 
and separate preprocessing task.

• Named Entity Recognition (NER): Automatic extraction 
of key phrases and nouns is a common task in PV data 
intake and is known in the NLP literature as named entity 
recognition. There has been rapid progress on this task 
in other areas of ML [31, 80–82], including scenarios 
with multiple languages [83, 84], biomedical applica-
tions [85–87], and when labeled data are scarce (see the 
example in Yao et al. [88] detailed in the next section).

• Text summarization and generation: Case reports can 
often contain large volumes of unstructured text that indi-
vidual case examiners must sift through and synthesize. 
Abstractive summarization by deep learning has also 
experienced an impressive leap in capabilities in recent 
years [89, 90] and thus could easily be applied to the 
analogous task in PV. Likewise, reports must be gener-
ated using codified and structured data, and the genera-
tive capabilities of deep learning models could be used 
for this task.

• Causal inference: The critical question of PV is whether 
a drug is actually causing the adverse events that have 
been reported in safety reports. Causal inference [91] 
is a statistical field that provides estimates of treatment 
effects in real-world data. There has recently been heavy 
interest in the intersection of causal inference and ML 
[92]. There is a nearly one-to-one translation of the ideas 
of causal inference to PV and this could serve as another 
tool for signal detection and data analysis.

4.3  Exemplar Studies

In this section, we wish to highlight several studies that 
were determined to reflect current ideas and trends in ML 
to provide good exemplars for how future studies might be 
conducted. Du et al. [88] provide an example of how an 
accurate adverse event annotation pipeline can be built, even 
when there are not large amounts of annotated data, using 
transfer and self-supervised learning. In the investigation, 
the authors only had a small set of labeled data in the form 
of 91 annotated VAERS reports, and the goal was to con-
struct an ML system to automatically extract mentions of 

named entities (e.g. adverse events, procedures, social cir-
cumstances, etc.) from the reports. They accomplished this 
goal by leveraging a pretrained transformer model known 
as BioBERT [66] that was fine-tuned on an unannotated set 
of 43,240 VAERS reports. They show that this approach 
leads to significantly better performance for this task when 
compared with traditional NLP methods and when compared 
against deep learning methods that did not employ transfer 
learning. Additionally, the annotated dataset they created 
is publicly available so that others may build on their work 
[93].

Zhang et al. [94] showed how ML can be useful in com-
plex adverse drug reaction recognition tasks. Adverse drug 
reactions can be found in all types of media, including scien-
tific literature, EHR data, and Tweets. In these settings, the 
drug and reaction are not necessarily in the same sentence 
or near each other in text. Typical ML methods rely on local 
semantic information (e.g. words in a single sentence) and 
can struggle in identifying these adverse drug reactions. 
Zhang et al. leverage a novel mechanism known as multi-hop 
attention to endow models with the ability to focus across 
multiple words in a single sentence and between sentences. 
They used the publicly available benchmarks TwiMed and 
ADE to assess model performance and to compare with 
baselines. They demonstrate that their method outper-
forms well-established ML models such as SVM, CNNs, 
and LSTMs. Additionally, they show multi-hop attention 
is superior at identifying adverse drug reactions compared 
with self-attention and multi-head self-attention, two recent 
mechanisms found in transformer models. They also per-
formed a comprehensive ablation study to isolate which of 
their innovations resulted in improved performance.

Finally, Wang et al. [95] demonstrate how ML can assist 
in determining causation from case reports. The authors uti-
lize causal inference, which is a conceptual framework that, 
under certain assumptions, allows for estimation of causal 
effects. This means that one can answer counterfactual or 
‘what if’ questions such as ‘what if a patient took medication 
A rather than medication B?’. They combine causal infer-
ence with transformer models that are trained on FAERS 
safety reports. Wang et al. assess their proposed transformer-
causal inference model on two tasks: identifying causes of 
analgesic-induced acute liver failure and identifying causes 
of tramadol-related mortalities. Their model is able to reca-
pitulate known risk factors for these adverse events (e.g. 
acetaminophen consumption for liver failure, and suicidality 
for tramadol mortalities). Moreover, the model was able to 
identify potential secondary risk factors that predispose indi-
viduals to liver failure. Importantly, Wang et al. published 
their code and preprocessed data (i.e. FAERS reports). This 
will enable future researchers to reproduce and extend their 
work.
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5  Conclusions

We have conducted a scoping review of the use of ML for 
PV applications. Our aim was to assess the extent to which 
PV has been or is ready to be improved by current deep 
learning-based AI techniques. We found that while certain 
modern practices have begun to appear, many of the primary 
reasons for the recent success of AI have yet to be translated. 
We conclude that without certain structural changes, PV is 
unlikely to experience similar kinds of advancements from 
current approaches to AI.
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